

Tout savoir sur: La fonction Gamma

Soit
$$\Gamma$$
 la fonction réelle définie par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$

1. Déterminer l'ensemble de définition de Γ.

Pour x un réel fixé, on pose la fonction $f(t) = t^{x-1}e^{-t} = e^{(x-1)lnt}e^{-t}$. Cette fonction est alors continue et positive sur $]0, +\infty[$.

• Au voisinage de 0, on a $f(t) \sim \frac{1}{t^{1-x}}$ en effet $e^{-0} = 1$.

Or d'après la règle des équivalents, l'intégrale $\int_0^1 \frac{dt}{t^{1-x}}$ est convergente si et seulement si 1-x<1 i.e x>0.

Ainsi, on en déduit que $\int_0^1 f(t)dt$ converge si et seulement si x > 0.

• Au voisinage de $+\infty$, $\lim_{t \to +\infty} t^2 f(t) = \lim_{t \to +\infty} t^2 t^{x-1} e^{-t} = \lim_{t \to +\infty} t^{x+1} e^{-t} = 0$,

d'après les croissances comparées.

Alors il existe A > 0, tel que $t \ge A \Rightarrow f(t) \le \frac{1}{t^{2}}$ d'après la définition d'une limite.

Alors la convergence de $\int_A^{+\infty} \frac{dt}{t^2}$ implique par majoration, la convergence de $\int_1^{+\infty} f(t)dt$.

Ainsi, la fonction $x \to \Gamma(x)$ est définie sur \mathbb{R}_+^*

2. Démontrer que $\forall x \in \mathbb{R}_+^*$, $\Gamma(x+1) = x\Gamma(x)$.

Pour $\varepsilon > 0$, $A > \varepsilon$ et $x \in]\varepsilon$, A[, posons une intégration par parties,

$$\begin{cases} u(t) = e^{-t} \Rightarrow u'(t) = -e^{-t} \\ v'(t) = t^{x-1} \Rightarrow v(t) = \frac{t^x}{x} \end{cases}$$

Ainsi,
$$\int_{\varepsilon}^{A} t^{x-1} e^{-t} dt = \left[e^{-t} \frac{t^{x}}{x} \right]_{\varepsilon}^{A} + \frac{1}{x} \int_{\varepsilon}^{A} t^{x} e^{-t} dt$$

Or $\lim_{\epsilon \to 0^+} e^{-t} \frac{t^x}{x} = \lim_{A \to +\infty} e^{-t} \frac{t^x}{x} = 0$, de plus toutes les intégrales convergent.

Alors
$$\Gamma(x) = \frac{1}{x}\Gamma(x+1)$$
.

$$\forall x \in \mathbb{R}_+^* \ \Gamma(x+1) = x \Gamma(x)$$

3. En déduire l'expression de $\Gamma(n)$ pour $n \in \mathbb{N}^*$

On pose $\forall n \in \mathbb{N}^*$, $H_n : "\Gamma(n) = (n-1)!$ "

• Pour n = 1, $\Gamma(1) = \int_0^{+\infty} e^{-t} dt$

Soit A > 0,
$$\int_0^A e^{-t} dt = [-e^{-t}]_0^A = -e^{-A} + 1$$
.

Or, $\lim_{A \to +\infty} -e^{-A} = 0$ par croissances comparées.

Donc, $\Gamma(1) = 1 = (1-1)! = 0!$, H_1 est vraie.

• Soit $n \ge 1$ tel que H_n soit vraie,

$$\Gamma(n+1) = n \Gamma(n) = n * (n-1) ! d'après H_n$$

D'où , $\Gamma(n+1) = n!$ D'où H_{n+1} vraie.

$$\forall n \in \mathbb{N}^*, \Gamma(n) = (n-1)!$$